

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE Further Mathematics AS Further Core Pure Paper 8FM0_01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 8FM0_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 80.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>,

examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Question	Scheme	Marks	AOs	
1. (a)	$(\det(\mathbf{M}) =) (4)(-7) - (2)(-5)$	M1	1.1a	
	M is non-singular because $det(\mathbf{M}) = -18$ and so $det(\mathbf{M}) \neq 0$	A1	2.4	
		(2)		
(b)	Area $R = \frac{\text{Area } S}{(\pm) \det \mathbf{M} } = \dots$	M1	1.2	
	Area $(R) = \frac{63}{ -18 } = \frac{7}{2}$ oe	A1ft	1.1b	
		(2)		
(c)	$\begin{pmatrix} 4 & -5 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} x \\ 2x \end{pmatrix} = \begin{pmatrix} 4x - 10x \\ 2x - 14x \end{pmatrix}$ $= \begin{pmatrix} -6x \\ -12x \end{pmatrix} \text{ and so all points on } y = 2x \text{ map to points on } y = 2x,$	M1	1.1b	
	$= \begin{pmatrix} -6x \\ -12x \end{pmatrix}$ and so all points on $y = 2x$ map to points on $y = 2x$, hence the line is invariant. $OR = -6 \begin{pmatrix} x \\ 2x \end{pmatrix}$ hence $y = 2x$ is invariant.	A1	2.1	
		(2)		
		(6	marks)	
	Notes			
(a)	M1 An attempt to find det(M). Just the calculation is sufficient. this mark, which may be embedded in an attempt at the inv det(M) = -18 and reference to zero, e.g. $-18 \neq 0$ and cond The conclusion may precede finding the determinant (e.g. "I det(M) $\neq 0$, det(M) = $-18 \neq 0$ " is sufficient or accept "Non-sidet(M) = -18 , therefore non-singular" or some other indicat Need not mention "det(M)" to gain both marks here a correct	verse Elusion. Non-singular if singular if det(ion of conclusi	M)≠ 0,	
(b)	 statement −18≠0, and conclusion hence M is non-singular ca M1 Recalls determinant is needed for area scale factor by dividind determinant. 	t determinant. $\frac{7}{2}$ or follow through $\frac{63}{ \text{their det} }$. Must be positive and should be simplified to		
(c)	M1 negative determinant.) Attempts the matrix multiplication shown or with equivalent, e.g $\begin{pmatrix} \frac{1}{2} & y \\ y \end{pmatrix}$. Note that the matrix multiplication shown or with equivalent, e.g $\begin{pmatrix} \frac{1}{2} & y \\ y \end{pmatrix}$. Note that the matrix multiplication shown or with equivalent, e.g.			
	A1 $use\begin{pmatrix} x \\ y \end{pmatrix}$ and substitute $y = 2x$ later and this is fine for the m Correct multiplication and working leading to conclusion the If the -6 is not extracted, they must make reference to image $y = 2x$. If the -6 is extracted to show it is a multiple of $\begin{pmatrix} x \\ 2x \end{pmatrix}$ conclusion "invariant" as minimum.	at the line is in points being	on line	

	Notes Continued		
Alt for (c)	$\binom{a}{b} = \frac{1}{-18} \binom{-7}{-2} \frac{5}{4} \binom{x}{2x} = \frac{-1}{18} \binom{-7x+10x}{-2x+8x}$	M1	1.1b
	$=\frac{-1}{18}\binom{3x}{6x}\left(=\frac{-1}{6}\binom{x}{2x}\right) \Rightarrow b=2a \text{ so points on line } y=2x \text{ map to}$	A1	2.1
	points on $y=2x$, hence it is invariant.		
Alt 2	Marks as per main scheme, (Since linear transformations map straight lines to straight lines)	M1	1.1b
All 2	(since linear transformations map straight lines to straight lines) E.g. (1,2) is on line $y = 2x$, and $\begin{pmatrix} 4 & -5 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4-10 \\ 2-14 \end{pmatrix}$	MII	1.10
	$=\begin{pmatrix} -6\\ -12 \end{pmatrix}$, which is also on the line y=2x, hence as (0,0) and (1,2) both map to points on y = 2x (and transformation is linear) then y =2x is	A1	2.1
	invariant.		
	Notes		
	M1 Identifies a point on the line $y = 2x$ and finds its image under T . I must be a clear statement it is because this is on the line, but fo accept with any line on $y = 2x$ without statement.		
	A1 Shows the image and another point, which may be $(0,0)$, on $y=2x$ points on $y = 2x$ concludes line is invariant. Need not reference to being linear for either mark here.		
Alt 3	$ \begin{pmatrix} 4 & -5 \\ 2 & -7 \end{pmatrix} \begin{pmatrix} x \\ mx+c \end{pmatrix} = \begin{pmatrix} X \\ mX+c \end{pmatrix} \Rightarrow \frac{4x-5(mx+c)=X}{2x-7(mx+c)=mX+c} $	M1	2.1
	$\Rightarrow 2x - 7(mx + c) = m(4x - 5(mx + c)) + c$		
	$\Rightarrow (5m^2 - 11m + 2)x + (5m - 8)c = 0$		
	$\Rightarrow (5m-1)(m-2) = 0 \Rightarrow m = \dots$		
	Or similar work with $c = 0$ throughout.		
	$(5m - 8 \neq 0 \Longrightarrow c = 0)$	A1	1.1b
	Hence $m = 2$ gives an invariant line (with $c = 0$), so $y = 2x$ is invariant.		
	Notes		
	M1 Attempts to find the equation of a general invariant line, or general through the origin (so may have $c = 0$ throughout). To gain the must progress from finding the simultaneous equations to form and solving to a value of m .	method m	ark they
	A1 Correct quadratic in <i>m</i> found, with $m = 2$ as solution (ignore the deduction that hence $y = 2x$ is an invariant line. Ignore errors in as $c = 0$ is always a possible solution. No need to see $c = 0$ derived to the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is an invariant line. Ignore errors in the deduction that hence $y = 2x$ is a solution that henc	the $(5m - $	

Question		Scheme	Marks	AOs
2.	$\{w = x \cdot$	$+3 \Longrightarrow x = w - 3$	B1	3.1a
	2(w-3)	$)^{3} + 6(w-3)^{2} - 3(w-3) + 12 (= 0)$	M1	1.1b
	$2w^3 - 1$	$8w^{2} + 54w - 54 + 6(w^{2} - 6w + 9) - 3w + 9 + 12(=0)$		
		$2w^3 - 12w^2 + 15w + 21 = 0$	M1	3.1a
		2w - 12w + 15w + 21 = 0 (So $p = 2, q = -12, r = 15$ and $s = 21$)	A1	1.1b
		(50 p - 2, q - 12, r - 15 and 5 - 21)	A1	1.1b
		<i>c</i> 2 12	(5)	
ALT 1	$\alpha + \beta$	$+\gamma = -\frac{6}{2} = -3, \ \alpha\beta + \beta\gamma + \alpha\gamma = -\frac{3}{2}, \ \alpha\beta\gamma = -\frac{12}{2} = -6$	B1	3.1a
	sum roo	$\frac{2}{\text{ots}} = \frac{2}{\alpha + 3 + \beta + 3 + \gamma + 3}$		
		$= \alpha + \beta + \gamma + 9 = -3 + 9 = 6$		
	pair sur	$n = (\alpha + 3)(\beta + 3) + (\alpha + 3)(\gamma + 3) + (\beta + 3)(\gamma + 3)$	-	
		$= \alpha\beta + \alpha\gamma + \beta\gamma + 6(\alpha + \beta + \gamma) + 27$		
		$=-\frac{3}{2}+6\times-3+27=\frac{15}{2}$	M1	3.1a
		2 2		0.14
	1	$t = (\alpha + 3)(\beta + 3)(\gamma + 3)$	_	
		$= \alpha\beta\gamma + 3(\alpha\beta + \alpha\gamma + \beta\gamma) + 9(\alpha + \beta + \gamma) + 27$	-	
		$= -6 + 3 \times -\frac{3}{2} + 9 \times -3 + 27 = -\frac{21}{2}$		
		$w^3 - 6w^2 + \frac{15}{2}w - \left(-\frac{21}{2}\right) (=0)$	M1	1.1b
		$2w^3 - 12w^2 + 15w + 21 = 0$	A1	1.1b
		(So $p = 2$, $q = -12$, $r = 15$ and $s = 21$)	A1	1.1b
			(5)	
			(5	marks)
		Notes		
	B1 M1	Selects the method of making a connection between x and w by	-	
	IVII	Applies the process of substituting their $x = aw \pm b$ into $2x^3 + b$	$6x^2 - 3x + 1$	2 (= 0)
		So accept e.g. if $x = \frac{w}{3}$ is used.		
	M1	Depends on having attempted substituting either $x = w - 3$ or	x = w + 3 is	nto the
		equation. This mark is for manipulating their resulting equation		
		$pw^3 + qw^2 + rw + s(=0)$ ($p \neq 0$). The "= 0" may be implied f	or this.	
See note	A1	At least three of p , q , r and s are correct in an equation with int	teger coeffic	ients.
	A1	(need not have "= 0") Correct final equation, including "=0". Accept integer multiple	20	
ALT 1	B1	Selects the method of giving three correct equations each conta		and γ .
	M1	Applies the process of finding sum roots, pair sum and product		
	M1	Applies w^3 – (their sum roots) w^2 + (their pair sum) w – (their		0)
		Must be correct identities, but if quoted allow slips in substitu	ition, but the	e "=0"
C. t		may be implied.		i and a
See note	A1	At least three of p , q , r and s are correct in an equation with interval (need not have "=0")	teger coeffic	ients.
	A1	Correct final equation, including "=0". Accept multiples with i	integer coeff	icients.
•		variable than w for the first four marks, but the final equation must		
	isw the f	ïnal two A marks – if subsequent division by 2 occurs then m	nark the fina	al
answer.				

Question	Scheme	Marks	AOs	
3	$n=1, \sum_{r=1}^{1} \frac{1}{(2r-1)(2r+1)} = \frac{1}{1\times 3} = \frac{1}{3} \text{ and } \frac{n}{2n+1} = \frac{1}{2\times 1+1} = \frac{1}{3} \text{ (true for } n=1\text{)}$	B1	2.2a	
	Assume general statement is true for $n = k$. So assume $\sum_{r=1}^{k} \frac{1}{(2r-1)(2r+1)} = \frac{k}{2k+1}$ is true.	M1	2.4	
	$\left(\sum_{r=1}^{k+1} \frac{1}{(2r-1)(2r+1)}\right) = \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$	M1	2.1	
	$=\frac{k(2k+3)+1}{(2k+1)(2k+3)}$	dM1	1.1b	
	$=\frac{2k^2+3k+1}{(2k+1)(2k+3)} = \frac{(2k+1)(k+1)}{(2k+1)(2k+3)} = \frac{(k+1)}{2(k+1)+1} \text{ or } \frac{k+1}{2k+3}$	A1	1.1b	
	As $\sum_{r=1}^{k+1} \frac{1}{(2r-1)(2r+1)} = \frac{(k+1)}{2(k+1)+1}$ then the general result is true for $n = k + 1$ As the general result has been shown to be true for $n = 1$, and true for $\underline{n = k \text{ implies true for } n = k + 1}$, so the result is true for all $\underline{n} \in \mathbb{N}$	Alcso	2.4	
		(6)		
			marks)	
	Notes			
	minimum expect to see $\frac{1}{1 \times 3}$ and $\frac{1}{2+1}$ for the substitutions. (No need to state for $n = 1$ for this mark.)M1Assumes (general result) true for $n = k$. (Assume (true for) $n = k$ is sufficient – that this may be recovered in their conclusion if they say e.g. if true for $n = k$ thetc.)M1Attempts to add $(k + 1)$ th term to their sum of k terms. Must be adding the $(k+$ term but allow slips with the sum.dM1Depends on previous M. Combines their two fractions over a correct common denominator for their fractions, which may be $(2k + 1)^2 (2k + 3)$ (allow a slip i numerator).A1Correct algebraic work leading to $\frac{(k+1)}{2(k+1)+1}$ or $\frac{k+1}{2k+3}$ A1cso Depends on all except the B mark being scored (but must have an attempt to sides must have been seen somewhere) and gives a correct induction statement 			

Question	Scheme	Marks	AOs
4.	$\begin{pmatrix} -2+\lambda \end{pmatrix}$ $\begin{pmatrix} -2 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$		
	$\left (\mathbf{r} =) \begin{pmatrix} -2+\lambda \\ 5-\lambda \\ 4-3\lambda \end{pmatrix} \mathbf{or} \begin{pmatrix} -2 \\ 5 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix} (\text{oe}) \right $	M1	1.1b
			1.10
	So meet if $(2 + 1)(1)$		
	$\begin{pmatrix} -2+\lambda \\ 1 \end{pmatrix}$	M1	3.1a
	$ \begin{pmatrix} -2+\lambda \\ 5-\lambda \\ 4-3\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = -7 \Longrightarrow (-2+\lambda) \times 1 + (5-\lambda) \times -2 + (4-3\lambda) \times 1 = -7 $	A1	1.1b
	$\Rightarrow 0\lambda - 8 = -7 \Rightarrow -8 = -7$ a contradiction so no intersection	A1ft	2.3
	Hence l is parallel to Π but not in it.	Alcso	3.2a
		(5)	
		(5	marks)
	Notes		
	M1 Forms a parametric form for the line. Allow one slip.	A A F	
	M1 Substitutes into the equation of the plane to an equation in	ιλ. May us	e
	Cartesian form of plane to substitute into. A1 Correct equation in λ		
	Alft Simplifies and derives a contradiction and deduces line ar	nd nlane do	not
	meet. Follow through in their initial equation in λ so	la plane do	not
	- contradiction so no intersection if λ disappears and const	tants unequ	al
	- line lies in plane if a tautology is arrived at	-	
	- meet in a point if a solution for λ is found.		
	But do not allow for incorrect simplification from a co	rrect initia	ıl
	equation in λ		
	Note that a miscopy/misread of 7 instead of –7 can therefore maximum of M1M1A0A1A0.	ore score a	
	A1cso Correct deduction from correct working. This may be seen	n two senai	rate
	statements in their working. You may see attempts at show	-	
	parallel before/after deducing there is no intersection.		
Alt 1	Note that some may a attempt a mix of the main scheme and Alt 1.	Mark und	er main
	scheme unless Alt 1 would score higher.		
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$		
	$\begin{vmatrix} -1 \\ -2 \end{vmatrix} = 1 \times 1 + (-1) \times (-2) + (-3) \times 1 = 0$	M1	3.1a
	$\begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix} = 1 \times 1 + (-1) \times (-2) + (-3) \times 1 = 0$		
	Hence l is parallel to Π	A1	1.1b
	(-2,5,4) on <i>l</i> , but $(1)(-2) + (-2)(5) + 1(4) = -8$	M1	1.1b
	$-8 \neq -7$ so $(-2, 5, 4)$ is not on the plane.	A1ft	2.3
	Hence l is (parallel to Π but) not in the plane.	A1cso	3.2a
		(5)	
		(5	marks)
	Alt 1 Notes		
	M1 Attempts the dot product between the two direction vector		
	A1 Shows dot product is zero and makes the correct deductio parallel to plane.	n unat line i	18
	M1 Finds a point on l and substitutes into the equation of Π	(vector or	
	Cartesian)		
	A1ft Simplifies and derives a contradiction – follow through th	eir equatio	n, so if
	arrive at a tautology, they should deduce the line is in the	-	-
1	A1cso Correct deduction from correct working but may be split a	-	cing

Question		Scheme	Marks	AOs
Alt 2		ts to solve $\frac{x+2}{1} = \frac{y-5}{-1} = \frac{z-4}{-3}$ and $x-2y+z = -7$ neously – eliminates one variable for M mark.	M1	3.1a
	e.g. y = (oe)	$z - (x+2) + 5 = -x + 3 \Longrightarrow x - 2(-x+3) + z = -7 \Longrightarrow 3x + z = -1$	A1	1.1b
		reduced equations, e.g. $-3(x+2) = z - 4 \Rightarrow 3x + z = -2$ + $z = -1 \Rightarrow (3x + z) - (3x + z) = -2 - (-1)$	M1	1.1b
	$\Rightarrow 0 = -$	-1 a contradiction so no intersection	A1ft	2.3
	Hence <i>l</i>	is parallel to Π but not in it.	A1cso	3.2a
			(5)	
			(5	marks)
		Alt 2 notes		
	M1 A1	Attempts to solve the Cartesian equation of the line and plane equation to eliminate one variable for the M. Correct elimination of their chosen variable. (E.g may see	-	-
		-2x - 2y - 2 = -7 etc)		
	M1 A1ft	Solves the reduced equations in two variables and derives a contradiction/line and plane do not meet. their result, so may reach a tautology and deduce lies in pl solution and deduce meet in a point.		-
	A1cso	Correct deduction from correct working.		

Question	Scheme	Marks	AOs
5 (a)	Complex roots of a real polynomial occur in conjugate pairs	M1	1.2
	so a polynomial with z_1 , z_2 and z_3 as roots also needs z_2^* and z_3^* as roots, so 5 roots in total, but a quartic has at most 4 roots, so no quartic can have z_1 , z_2 and z_3 as roots.	A1	2.4
		(2)	
(b)	$\frac{z_2 - z_1}{z_3 - z_1} = \frac{-1 + 2i - (-2)}{1 + i - (-2)} = \frac{1 + 2i}{3 + i} \times \frac{3 - i}{3 - i} = \dots$	M1	1.1b
	$=\frac{3-i+6i+2}{9+1}=\frac{5+5i}{10}=\frac{1}{2}+\frac{1}{2}i$ oe	A1	1.1b
	As $\frac{1}{2} + \frac{1}{2}i$ is in the first quadrant (may be shown by diagram), hence $\arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right) = \arctan\left(\frac{\frac{1}{2}}{\frac{1}{2}}\right) (= \arctan(1)) = \frac{\pi}{4}*$	A1*	2.1
	(72)	(3)	
(c)	$\arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right) = \arg\left(z_2 - z_1\right) - \arg\left(z_3 - z_1\right) = \arg\left(1 + 2i\right) - \arg\left(3 + i\right)$	M1	1.1b
	Hence $\arctan(2) - \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}*$	A1*	2.1
		(2)	
(d)	Line passing through z_2 and the negative imaginary axis drawn.	B1	1.1b
	Area below and left of their line shaded, where the line must have negative gradient passing through negative imaginary axis but need not pass through z_2	B1	1.1b
	Unless otherwise indicated by the student mark Diagram 1(if used) if there are multiple attempts.		
		(2)	
		(9	marks)

		Notes
(a)	M1	Some evidence that complex roots occur as conjugate pairs shown, e.g. stated as in scheme, or e.g. identifying if $-1+2i$ is a root then so is $-1-2i$. Mere mention of complex conjugates is sufficient for this mark.
	A1	A complete argument, referencing that a quartic has at most 4 roots, but would need at least 5 for all of z_1 , z_2 and z_3 as roots. There should be a clear statement about the number of roots of a quartic (e.g a quartic has four roots), and that this is not enough for the two conjugate pairs and real root.
(b)	M1	Substitutes the numbers in expression and attempts multiplication of numerator and denominator by the conjugate of their denominator or uses calculator to find the quotient. (May be implied.) NB Applying the difference of arguments and using decimals is M0 here.
	A1	Obtains $\frac{1}{2} + \frac{1}{2}i$. (May be from calculator.) Accepted equivalent Cartesian forms.
	A1*	Uses arctan on their quotient and makes reference to first quadrant or draws diagram to show they are in the first quadrant. to justify the argument.
(c)	M1	Applies the formula for the argument of a difference of complex numbers and substitutes values (may go directly to arctans if the arguments have already been established). If used in (b) it must be seen or referred to in (c) for this mark to be awarded. Allow for $\arg(z_2 - z_1) - \arg(z_3 - z_1)$ if $z_2 - z_1$
		and $z_3 - z_1$ have been clearly identified in earlier work.
	A1*	Completes the proof clearly by identifying the required arguments and using the result of (b). Use of decimal approximations is A0.
(d)	B1 B1	Draws a line through z_2 and passing through negative imaginary axis. Correct side of bisector shaded. Allow this mark if the line does not pass through z_2 . But it should be an attempt at the perpendicular bisector of the other two points – so have negative gradient and pass through the negative real axis.
		Ignore any other lines drawn for these two marks.

Question	Scheme	Marks	AOs
6. (a)	(mean $= \overline{x} =) \frac{1}{n} \sum_{r=1}^{n} (7+3r)$	M1	1.1a
	$\sum_{r=1}^{n} (7+3r) = \left(7\sum_{r=1}^{n} 1+3\sum_{r=1}^{n} r\right) = \frac{7n+3\frac{n}{2}(n+1)}{\overline{x}} = 7+\frac{3}{2}(n+1) = \frac{14+3n+3}{2} = \frac{1}{2}(3n+17)*$	M1	1.1b
	$\overline{x} = 7 + \frac{3}{2}(n+1) = \frac{14+3n+3}{2} = \frac{1}{2}(3n+17)*$	A1*	2.1
		(3)	
(b)	Correct overall strategy to find the variance or standard deviation. This must include: • An attempt to find the mean • An attempt at $\sum (7+3r)^2$ as part of their formula	M1	3.1a
	 (however poor, or if stated and followed by a value or if used with incorrect limits). An attempt at either variance formula with their mean (allow slips in the formula) 	1111	5.1a
(Mean)	$mean (= \overline{x}) = 136$	B1	1.1b
(Sum)	Way1: $\sum_{r=1}^{n} (7+3r)^2 = \sum_{r=1}^{n} (49+42r+9r^2)$		
	$= \underline{\underline{49n}} + 42 \times \underline{\frac{1}{2}n(n+1)} + 9 \times \underline{\frac{1}{6}n(n+1)(2n+1)}$	<u>M1</u>	1.1b
	Way 2: $\sum_{r=1}^{n} (x_i - \overline{x})^2 = \sum_{r=1}^{n} (7 + 3r - "136")^2 = a \sum_{r=1}^{n} r^2 + b \sum_{r=1}^{n} r + c \sum_{r=1}^{n} 1$	<u>B1</u>	1.1b
	$=9 \times \frac{1}{6} n(n+1)(2n+1) - "774" \times \frac{1}{2} n(n+1) + \frac{"16641"n}{"16641"n}$		
(Variance/st andard deviation)	$=9 \times \frac{1}{6} n(n+1)(2n+1) - "774" \times \frac{1}{2} n(n+1) + \underline{"16641"n}$ Way 1: = $\frac{"2032690"}{85} - 136^{2} = \dots$ or $\frac{"2032690"}{84} - \frac{85}{84} \times 136^{2} = \dots$ Way 2: = $\frac{"460530"}{85} = \dots$ or $\frac{"460530"}{84} = \dots$ (using sample standard deviation).	M1	1.1b
	So s.d = $\sqrt{5418} = 73.6$ (g) Accept 74.0 (g) if sample s.d. used	A1	1.1b
		(6)	
		(9	marks)

		Notes
(a)	M1	Selects the correct procedure for finding the mean (\overline{x}), attempting sum and dividing by <i>n</i> .
	M1	Splits the sum and applies the formulae for $\sum r$ (accept 7+3 $\frac{n}{2}(n+1)$ here)
		Or uses arithmetic series formula $\frac{1}{2}n(a+l)$ with $a = 10$ and l an attempt at
		$7 + 3 \times n$, or $\frac{n}{2}(2a + (n-1)d)$ with $a = 10$ and $d = 3$
	A1*	Correct work proceeding to the answer with an intermediate step shown.
		Special case: Award M0M1A0 for candidates who use $\frac{1}{2}(a+l)$ or
		equivalent without justification of the division by <i>n</i> .
(b)	M1	Correct overall strategy to get as far as the variance of marbles in the collection. The attempt at variance should be recognisable (though allow e.g sign slips in the
		formula for this mark) and an attempt, however poor, at $\sum (7+3r)^2$ must
	Dí	have been made
	B1	Correct value for the mean for 85 marbles (accept as a single fraction, $\frac{272}{2}$). If a
		student works algebraically until the last step, a correct final answer will imply this mark.
	M1	Expands brackets and applies summation formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to their
		expression, either in terms of n or with $n = 85$ but must have correct limits. Allow for obtaining an expression of the correct form for Way 2 if the mean is kept in terms of " n ". This mark is for correct application of these two summation formula on an attempt
		at $\sum_{r=1}^{n} (7+3r)^2$ so accept even if this is not part of an attempt at the variance.
	B1	Correct use of $\sum_{n=1}^{n} 1 = n$ in their expression (must be correct limits).
	M1	Correctly applies variance or standard deviation formula with $n = 85$, their attempt at $\sum x^2$ (which need not be using 7 + 3 <i>r</i> or correct limits) and their
		mean. Accept use of the sample variance/standard deviation is used (dividing by $n-1$)
		For reference the variance formula is $($
		$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \overline{x}^{2} \text{ where } x_{r} = 7 + 3r \text{ here, or accept}$
		for sample variance $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \left(\frac{1}{n-1} \sum_{i=1}^n x_i^2\right) - \frac{n\overline{x}^2}{n-1}$
	A1	Correct standard deviation to 1 decimal place. If sample standard deviation is used, the answer will be 74.0 g to 1 d.p. (74.04)
		n specifies use of summation formula and so these must be seen for the 2 nd M and ark. However, if just 2032690 appears from a calculator all other marks are e.

Question		Scheme	Marks	AOs
7. (a)	$\alpha + \beta +$	$\left(\alpha + \frac{12}{\alpha} - \beta\right) = 8 \text{ so } 2\alpha + \frac{12}{\alpha} = 8$	M1	1.1b
7. (d)			A1	1.1b
	$\Rightarrow 2\alpha^2$	$-8\alpha + 12 = 0$ or $\alpha^2 - 4\alpha + 6 = 0$		
	$\Rightarrow \alpha = -$	$\frac{4 \pm \sqrt{(-4)^2 - 4(1)(6)}}{2(1)} \text{or} (\alpha - 2)^2 - 4 + 6 = 0 \implies \alpha = \dots$	M1	1.1b
	$\Rightarrow \alpha = 2$	$2\pm \mathrm{i}\sqrt{2}$ are the two complex roots	A1	1.1b
	A correc	et full method to find the third root. Common methods are:		
	Sum of 1	roots = 8 \Rightarrow third root = 8 - $(2 + i\sqrt{2}) - (2 - i\sqrt{2}) =$		
	third ro	pot = 2 + i $\sqrt{2}$ + $\frac{12}{2 + i\sqrt{2}} - (2 - i\sqrt{2}) =$	M1	2 1 0
	Product	of roots = 24 \Rightarrow third root = $\frac{24}{(2+i\sqrt{2})(2-i\sqrt{2})} =$	M1	3.1a
		$(z - \beta) = z^2 - 4z + 6 \Longrightarrow f(z) = (z^2 - 4z + 6)(z - \gamma) \Longrightarrow \gamma = \dots$ division to find third factor).		
		he roots of $f(z) = 0$ are $2 \pm i\sqrt{2}$ and 4	A1	1.1b
			(6)	
(b)	E.g. f(4)	$= 0 \Longrightarrow 4^3 - 8 \times 4^2 + 4p - 24 = 0 \Longrightarrow p = \dots$		
	Or $p = ($	$2+i\sqrt{2}\left(2-i\sqrt{2}\right)+4\left(2+i\sqrt{2}\right)+4\left(2-i\sqrt{2}\right) \Rightarrow p=$	M1	3.1a
	Or $f(z)$	$= (z-4)(z^2-4z+6) \Longrightarrow p = \dots$		
	$\Rightarrow p = 2$	22 cso	A1	1.1b
			(2)	
			(8	marks)
	-	Notes		
(a)	M1	Equates sum of roots to 8 and obtains an equation in just α .		
	A1 M1	Obtains a correct equation in α . Forms a three term quadratic equation in α and attempts to sol	ve this equi	ation by
	IVII	either completing the square or using the quadratic formula to g	-	•
	A1	$\alpha = 2 \pm i\sqrt{2}$		
	M1	Any correct method for finding the remaining root. There are v	arious route	es
		possible. See scheme for common ones.		
		Allow this mark if -24 is used as the product. See note below for a less common approach.		
	A1	Third root found with all three roots correct. Note α and β need	l not be ider	ntified.
(b)	M1	Any correct method of finding p . For example, applies the factor	or theorem,	
		of finding the pair sum of roots, or uses the roots to form $f(z)$.		1
	A1	p = 22 by correct solution only. Note: this can be found using	only their c	complex
Note for (9) final M	roots from (a) (e.g. by factor theorem) - it is possible to find the second and third roots using only	v one initi	al root

Note for (a) final M – it is possible to find the second and third roots using only one initial root (e.g. if second root forgotten or error leads to only one initial root being found).

Product of roots = $\alpha\beta\left(\alpha + \frac{12}{\alpha} - \beta\right) = 24 \Rightarrow \alpha\beta^2 - (\alpha^2 + 12)\beta + 24 = 0$, substitutes in α and attempts

to solve the quadratic in β to achieve remaining roots. The final M can be gained once three roots in total have been obtained. (This is unlikely to be seen as part of a correct answer.) Allow if -24 has been used for the product.

Question	Scheme	Marks	AOs
8. (a)	Note: Allow alternative vector forms throughout, e.g row vectors, i , j , k notation		
	$\mathbf{b} = \pm \begin{bmatrix} 300\\ 300\\ -50 \end{bmatrix} - \begin{bmatrix} -300\\ 400\\ -150 \end{bmatrix} = \pm \begin{bmatrix} 600\\ -100\\ 100 \end{bmatrix}$	M1	1.1b
	So $\mathbf{r} = \begin{pmatrix} -300\\400\\-150 \end{pmatrix} + \lambda \begin{pmatrix} 600\\-100\\100 \end{pmatrix}$ oe $\begin{pmatrix} e.g. \ \mathbf{r} = \begin{pmatrix} 300\\300\\-50 \end{pmatrix} + \lambda \begin{pmatrix} 6\\-1\\1 \end{pmatrix} \end{pmatrix}$	A1	2.5
	1 200	(2)	2.2-
(b)(i)	k = 200 If <i>M</i> is the point on mountain, and <i>X</i> a general point on the line then eg.	B1	2.2a
	$\overrightarrow{MX} = \begin{pmatrix} -300\\ 400\\ -150 \end{pmatrix} + \lambda \begin{pmatrix} 600\\ -100\\ 100 \end{pmatrix} - \begin{pmatrix} 100\\ k\\ 100 \end{pmatrix} = \begin{pmatrix} -400 + 600\lambda\\ 400 - k - 100\lambda\\ -250 + 100\lambda \end{pmatrix} = \begin{pmatrix} -400 + 600\lambda\\ 200 - 100\lambda\\ -250 + 100\lambda \end{pmatrix}$ May be in terms of k or with $k = 200$ used.	M1	3.1b
	e.g. $\begin{pmatrix} -400 + 600\lambda \\ 200 - 100\lambda \\ -250 + 100\lambda \end{pmatrix} \bullet \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix} = 0 \Rightarrow \lambda = \dots$	dM1	1.1b
	So e.g. $\overline{OX} = \begin{pmatrix} -300\\400\\-150 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 600\\-100\\100 \end{pmatrix} = \dots$	M1	3.4
	So coordinates of X are (150, 325, -75) Accept as $\begin{pmatrix} 150\\ 325\\ -75 \end{pmatrix}$	A1	1.1b
		(5)	
(ii)	Length of tunnel is $\sqrt{(150-100)^2 + (325-200)^2 + (-75-100)^2} = \dots$	M1	1.1b
	Awrt 221m from correct working, so λ must have been correct. (Must include units)	A1	1.1b
		(2)	
(c)	$\left \overrightarrow{OP} \right = \sqrt{(-300)^2 + 400^2 + (-150)^2} \approx 522$ $\left \overrightarrow{OQ} \right = \sqrt{300^2 + 300^2 + 50^2} \approx 427$	M1	1.1b
	New tunnel length is significantly shorter than these values so it is likely that the company will decide to build the accessway. Reason and conclusion needed.	A1ft	2.2b
		(2)	
(d)	E.g. The mountainside is not likely to be flat so a plane may not be a good model.The tunnel and/or pipeline will not have negligible thickness so modelling as lines may not be appropriate.A shortest length tunnel may not be possible, or most practical, as the strata of the rock in the mountain have not been considered by the model.	B1	3.5b
		(1)	
		(12	marks)

		Notes
(a)	M1	Attempts the direction between positions <i>P</i> and <i>Q</i> . If no method shown, two correct
		entries imply the method.
	A1	A correct equation in the correct form. Any point on the line may used, and any
		non-zero multiple of the direction. Must begin $\mathbf{r} = \dots$
(b)		Note: mark part (b) as a whole.
(i)	B1	Correct value of <i>k</i> deduced.
	M1	Realises the need to find the distance from the point on the mountain to a general
		point on the line.
	dM1	Takes the dot product with the direction vector of line and sets to zero and proceeds
		to find a value of λ . If working with k as well, allow for finding either λ in terms of
		k or k in terms of λ .
	M1	Substitutes their λ into their line equation. (This may not have come from correct
		work, but the method is for using the line equation here.) May be implied by two
		out of three correct coordinates for their λ
		Note: May omit this step and substitute λ into MX . This gains M0 here, but can
		gain M1A1 in (ii) for finding the length of \overline{MX} .
	A1	Correct point.
	M1	Uses the distance formula with their point and M, or with their \overrightarrow{MX} from (i). (May
(b)(ii)		be implied by two out of three correct coordinates for their λ)
	A1	Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m
(c)	M1	Calculates the two distances <i>OP</i> and <i>OQ</i> .
(0)	A1ft	Makes an appropriate conclusion for their tunnel length, but distances OP and OQ
		must be correct. A reason and a conclusion is needed.
		Accept for reason e.g "significantly shorter" or "tunnel is more than 100m less than
		either existing accessway", as these act as a comparative judgement. But do not
		accept just "shorter" or just inequalities given with no comparative evidence.
(d)	B1	Any appropriate criticism of the model given. The model must be referred to in
		some way – e.g. criticise the straightness/thickness of line, flatness of plane or lack
		of taking strata etc of mountain into account (as e.g this means line may not be
		straight).
		Note: reference to measurements not being correct is NOT a limitation of the
		model.

For reference Some of the other common equations/values of λ in (b)(i) are:

$$\overrightarrow{MX} = \begin{pmatrix} -300\\ 400\\ -150 \end{pmatrix} + \lambda \begin{pmatrix} 6\\ -1\\ 1 \end{pmatrix} - \begin{pmatrix} 100\\ 200\\ 100 \end{pmatrix} = \begin{pmatrix} -400 + 6\lambda\\ 200 - \lambda\\ -250 + \lambda \end{pmatrix} \Rightarrow \lambda = 75$$
$$\overrightarrow{MX} = \begin{pmatrix} 300\\ 300\\ -50 \end{pmatrix} + \lambda \begin{pmatrix} 600\\ -100\\ 100 \end{pmatrix} - \begin{pmatrix} 100\\ 200\\ 100 \end{pmatrix} = \begin{pmatrix} 200 + 600\lambda\\ 100 - 100\lambda\\ -150 + 100\lambda \end{pmatrix} \Rightarrow \lambda = -\frac{1}{4}$$
$$\overrightarrow{MX} = \begin{pmatrix} 300\\ 300\\ -50 \end{pmatrix} + \lambda \begin{pmatrix} 6\\ -1\\ 1 \end{pmatrix} - \begin{pmatrix} 100\\ 200\\ 100 \end{pmatrix} = \begin{pmatrix} 200 + 6\lambda\\ 100 - \lambda\\ -150 + 100\lambda \end{pmatrix} \Rightarrow \lambda = -25$$

(If the negative direction vectors are used in any case, the value of λ is just the negative of the above.) See Appendix for some alternatives to part (b)

Question	Scheme	Marks	AOs
9.	A correct overall strategy, an attempt at integrating y^2 with respect to x combine in some way with the volume of revolution formula (use of $\pi \int y^2 dx$ or $\alpha \int y^2 dx$ for any variable α is fine) followed by attempt to find an angle/form an equation in θ	M1	3.1a
	$y^{2} = kx^{\frac{2}{3}} + + \frac{m}{x^{\frac{4}{3}}}$ or $y^{2} = kx^{\frac{2}{3}} + + mx^{-\frac{4}{3}}$ where is one or two more terms.	M1	1.1b
	$y^{2} = 4x^{\frac{2}{3}} + 4x^{-\frac{1}{3}} + x^{-\frac{4}{3}}$ or $y^{2} = 4x^{\frac{2}{3}} + 2x^{-\frac{1}{3}} + x^{-\frac{4}{3}} + 2x^{-\frac{1}{3}}$ (oe)	A1	1.1b
	$\int y^2 dx = \int 4x^{\frac{2}{3}} + \frac{4}{x^{\frac{1}{3}}} + \frac{1}{x^{\frac{4}{3}}} dx = \alpha x^{\frac{5}{3}} + \beta x^{\frac{2}{3}} + \gamma x^{-\frac{1}{3}}$	M1	1.1b
	$=\frac{12x^{\frac{5}{3}}}{5}+6x^{\frac{2}{3}}-\frac{3}{x^{\frac{1}{3}}}$ (oe)	A1ft A1	1.1b 1.1b
	$\frac{\theta}{2} \left[\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{2}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \frac{461}{2}$ $\Rightarrow \frac{\theta}{2} \left[\left(\frac{12 \times 8^{\frac{5}{3}}}{5} + 6 \times 8^{\frac{2}{3}} - \frac{3}{8^{\frac{1}{3}}} \right) - \left(\frac{12 \times \left(\frac{1}{8}\right)^{\frac{5}{3}}}{5} + 6 \times \left(\frac{1}{8}\right)^{\frac{2}{3}} - \frac{3}{\left(\frac{1}{8}\right)^{\frac{1}{3}}} \right) \right] = \frac{461}{2} \Rightarrow \theta = \dots$	M1	3.1a
	OR $\pi \left[\frac{12x^{\frac{5}{3}}}{5} + 6x^{\frac{5}{3}} - \frac{3}{x^{\frac{1}{3}}} \right]_{\frac{1}{8}}^{8} = \pi \left[\left(\frac{12 \times 8^{\frac{5}{3}}}{5} + 6 \times 8^{\frac{5}{3}} - \frac{3}{8^{\frac{1}{3}}} \right) - \left(\frac{12 \times \left(\frac{1}{8}\right)^{\frac{5}{3}}}{5} + 6 \times \left(\frac{1}{8}\right)^{\frac{2}{3}} - \frac{3}{\left(\frac{1}{8}\right)^{\frac{1}{3}}} \right) \right] = \dots$ followed by $\frac{\theta}{2\pi} \times \dots = \frac{461}{2} \Longrightarrow \theta = \dots$		
	$\theta = \frac{40}{9}$ (radians)	A1	1.1b
		(8)	montra
		(ð	marks)

M1A correct overall strategy, either finding full volume rotated by 2π first, then performing some kind of scaling, or using $\alpha \int y^2 dx$ for a variable α (ideally $\frac{\theta}{2}$, but for the strategy accept with any variable multiple), to form an equation in just the angle.M1Attempting to square y to a three or four term expression. Look for correct powers on first and last term with some term(s) in the middle.A1Correct expansion in three or four terms – award when first seen.M1Integrates y^2 w.r.t. x. Must have at least two terms in their y^2 with fractional indices. Power to be increased by 1 in at least two terms.A1ftTwo terms of integral correct. Follow through on their expansion. Need not be simplified.M1Fully correct integral. Need not be simplified. May still be four terms Either : Substitutes limits and subtracts correct way round (must be seen or implied by the answer), and equates to $\frac{461}{2}$ if using $\frac{1}{2}\theta \int y^2 dx$ and proceeds to find θ . Or : Substitutes limits and subtracts correct way round (seen or implied) and multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$.A1The method must be correct for this mark – so they must be using $\frac{\theta}{2} \int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$ A1Correct angle found. Accept $\frac{40}{9}$, awrt 4.44 or awrt 255° (as long as the degrees		Notes
for the strategy accept with any variable multiple), to form an equation in just the angle. M1 Attempting to square y to a three or four term expression. Look for correct powers on first and last term with some term(s) in the middle. A1 Correct expansion in three or four terms – award when first seen. M1 Integrates y^2 w.r.t. x. Must have at least two terms in their y^2 with fractional indices. Power to be increased by 1 in at least two terms. A1ft Two terms of integral correct. Follow through on their expansion. Need not be simplified. A1 Fully correct integral. Need not be simplified. May still be four terms Either : Substitutes limits and subtracts correct way round (must be seen or implied by the answer), and equates to $\frac{461}{2}$ if using $\frac{1}{2}\theta \int y^2 dx$ and proceeds to find θ . Or : Substitutes limits and subtracts correct way round (seen or implied) and multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$. The method must be correct for this mark – so they must be using $\frac{\theta}{2} \int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$	M1	A correct overall strategy, either finding full volume rotated by 2π first, then
M1Attempting to square y to a three or four term expression. Look for correct powers on first and last term with some term(s) in the middle.A1Correct expansion in three or four terms – award when first seen.M1Integrates y^2 w.r.t. x. Must have at least two terms in their y^2 with fractional indices. Power to be increased by 1 in at least two terms.A1ftTwo terms of integral correct. Follow through on their expansion. Need not be simplified.A1Fully correct integral. Need not be simplified. May still be four terms Either : Substitutes limits and subtracts correct way round (must be seen or implied by the answer), and equates to $\frac{461}{2}$ if using $\frac{1}{2}\theta \int y^2 dx$ and proceeds to find θ . Or : Substitutes limits and subtracts correct way round (seen or implied) and multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$.The method must be correct for this mark – so they must be using $\frac{\theta}{2} \int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$		performing some kind of scaling, or using $\alpha \int y^2 dx$ for a variable α (ideally $\frac{\theta}{2}$, but
M1Attempting to square y to a three or four term expression. Look for correct powers on first and last term with some term(s) in the middle.A1Correct expansion in three or four terms – award when first seen.M1Integrates y^2 w.r.t. x. Must have at least two terms in their y^2 with fractional indices. Power to be increased by 1 in at least two terms.A1ftTwo terms of integral correct. Follow through on their expansion. Need not be simplified.A1Fully correct integral. Need not be simplified. May still be four terms Either : Substitutes limits and subtracts correct way round (must be seen or implied by the answer), and equates to $\frac{461}{2}$ if using $\frac{1}{2}\theta \int y^2 dx$ and proceeds to find θ . Or : Substitutes limits and subtracts correct way round (seen or implied) and multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$.The method must be correct for this mark – so they must be using $\frac{\theta}{2} \int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$		
M1Integrates y^2 w.r.t. x. Must have at least two terms in their y^2 with fractional indices. Power to be increased by 1 in at least two terms.A1ftTwo terms of integral correct. Follow through on their expansion. Need not be simplified.A1Fully correct integral. Need not be simplified. May still be four terms Either : Substitutes limits and subtracts correct way round (must be seen or implied by the answer), and equates to $\frac{461}{2}$ if using $\frac{1}{2}\theta \int y^2 dx$ and proceeds to find θ . Or : Substitutes limits and subtracts correct way round (seen or implied) and multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$.The method must be correct for this mark – so they must be using $\frac{\theta}{2} \int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$	M1	Attempting to square y to a three or four term expression. Look for correct powers on
Power to be increased by 1 in at least two terms. A1ft A1ft A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	A1	
simplified. A1 Fully correct integral. Need not be simplified. May still be four terms Either : Substitutes limits and subtracts correct way round (must be seen or implied by the answer), and equates to $\frac{461}{2}$ if using $\frac{1}{2}\theta\int y^2 dx$ and proceeds to find θ . Or : Substitutes limits and subtracts correct way round (seen or implied) and multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$. The method must be correct for this mark – so they must be using $\frac{\theta}{2}\int y^2 dx$ directly or $\pi\int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$	M1	
M1 Either : Substitutes limits and subtracts correct way round (must be seen or implied by the answer), and equates to $\frac{461}{2}$ if using $\frac{1}{2}\theta \int y^2 dx$ and proceeds to find θ . Or : Substitutes limits and subtracts correct way round (seen or implied) and multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$. The method must be correct for this mark – so they must be using $\frac{\theta}{2}\int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$	A1ft	
M1 by the answer), and equates to $\frac{461}{2}$ if using $\frac{1}{2}\theta \int y^2 dx$ and proceeds to find θ . Or : Substitutes limits and subtracts correct way round (seen or implied) and multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$. The method must be correct for this mark – so they must be using $\frac{\theta}{2}\int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$	A1	Fully correct integral. Need not be simplified. May still be four terms
Or : Substitutes limits and subtracts correct way round (seen or implied) and multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$. The method must be correct for this mark – so they must be using $\frac{\theta}{2}\int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$	M1	
multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before equating to $\frac{461}{2}$. The method must be correct for this mark – so they must be using $\frac{\theta}{2}\int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$		by the answer), and equates to $\frac{1}{2}$ if using $\frac{1}{2}\theta \int y^2 dx$ and proceeds to find θ .
equating to $\frac{461}{2}$. The method must be correct for this mark – so they must be using $\frac{\theta}{2} \int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$		Or : Substitutes limits and subtracts correct way round (seen or implied) and
The method must be correct for this mark – so they must be using $\frac{\theta}{2} \int y^2 dx$ directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$		multiplies by π to get the full volume AND then multiplies the result by $\frac{\theta}{2\pi}$ before
directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$		equating to $\frac{461}{2}$.
		- ·
		directly or $\pi \int y^2 dx$ and scale by $\frac{\theta}{2\pi}$ when setting equal to $\frac{461}{2}$
	A1	
units are made clear – do not accept just 255) is once a correct value of θ is found.		units are made clear – do not accept just 255) is wonce a correct value of θ is found.

Special case The question specified that algebraic integration must be used, so use of a calculator to find the integral cannot score the marks for integration but may be allowed the strategy and answer marks. A maximum of M1M0A0M0A0A0M1A1 is available in such cases.

Expanding y^2 first but showing no integration can score the second M and first A (if earned) as well.

Note that $\int_{1/8}^{8} (2x^{\frac{1}{3}} + x^{-\frac{2}{3}})^2 dx = \frac{4149}{40} = 103.725$ but just this alone is worth **no marks**. There must

be an attempt to incorporate this within a strategy to gain access to marks.

Question	Scheme	Marks	AOs
10. (a)	<i>a</i> represents the proportion of juvenile chimpanzees that (survive and) remain juvenile chimpanzees the next year.	B1	3.4
		(1)	
(b)(i)	Determinant = $0.82a - 0.08 \times 0.15$	M1	1.1b
	$\begin{bmatrix} a & 0.15\\ 0.08 & 0.82 \end{bmatrix}^{-1} = \dots \begin{bmatrix} 0.82 & -0.15\\ -0.08 & a \end{bmatrix}$	M1	1.1b
	$ \begin{pmatrix} a & 0.15 \\ 0.08 & 0.82 \end{pmatrix}^{-1} = \frac{1}{0.82a - 0.012} \begin{pmatrix} 0.82 & -0.15 \\ -0.08 & a \end{pmatrix} $	A1	1.1b
		(3)	
(ii)	$\begin{pmatrix} a & 0.15 \\ 0.08 & 0.82 \end{pmatrix}^{-1} \begin{pmatrix} 15360 \\ 43008 \end{pmatrix} = \frac{1}{0.82a - 0.012} \begin{pmatrix} 0.82 \times 15360 - 0.15 \times 43008 \\ (-0.08) \times 15360 + 43008a \end{pmatrix}$ OR forms equations $\frac{15360 = aJ_0 + 0.15 \times A_0}{43008 = 0.08 \times J_0 + 0.82 \times A_0}$	M1	3.1a
	$\begin{bmatrix} \frac{1}{0.82a - 0.012} \left[6144 + (43008a - 1228.8) \right] = 64000 \\ \Rightarrow 4915.2 + 43008a = 64000(0.82a - 0.012) \Rightarrow a = \dots \\ OR \\ A_0 = 64000 - J_0 \Rightarrow 43008 = 0.08 \times J_0 + 0.82 \times (64000 - J_0) = J_0 = \dots \\ \Rightarrow a = \frac{15360 - (64000 - J_0)}{J_0} = \dots \end{bmatrix}$	M1	3.1a
	$a = \frac{5683.2}{0.60} = 0.60$	A1	1.1b
	9472		1.10
/•••		(3)	
(iii)	Initial juvenile population = $\frac{"6144"}{"0.48"} = 12800$	M1	3.4
	So change of 2560 juvenile chimpanzees	A1	1.1b
		(2)	
(c)	As the number of juveniles has increased, the model is not initially predicting a decline, so is not suitable in the short term. (Follow through their answer to (b) – but they must have made an attempt at it to find at least a value for J_0)	B1ft	3.5a
		(1)	
(d)	Third category needs to be introduced for chimpanzees aged 40 and above, mature chimpanzees M_n , and a matrix multiplication of increased dimension set up. Accept $3 \times 3, 3 \times 2$ or 2×3 matrices including all three categories in the column vector.	M1	3.5c
	The corresponding matrix model will have the form $ \begin{pmatrix} J_{n+1} \\ A_{n+1} \\ M_{n+1} \end{pmatrix} = \begin{pmatrix} a & b & \underline{0} \\ 0.08 & c & 0 \\ 0 & d & e \end{pmatrix} \begin{pmatrix} J_n \\ A_n \\ M_n \end{pmatrix} $ (The underlined zero must be correct but do not be concerned about any values used in the other entries.)	A1	3.3
		(2)	
			marks)

		Notes
(a)	B1	Correct interpretation. Need not mention survival but must be clear it is the (proportion of) juveniles that remain as juveniles the next year (ie those that survive but don't progress to adulthood). E.g. accept "(number of) juveniles who do not become adults" but do not accept "surviving juveniles".
		Mark part (b) as a whole.
(b)(i)	M1	Attempts the determinant in terms of a Allow miscopies for the attempt. Allow $0.82a - 0.12$ as a slip.
	M1	Attempts the form of the inverse, swapped leading diagonals and sign changed on both off diagonals. Allow miscopies of the numbers but the signs must be correct.
(••)	A1	Correct inverse matrix
(ii)	M1	Use the inverse matrix and attempts to find the initial juvenile and adult populations. (May have determinant 1 for this mark.) Alternatively, sets up simultaneous equations from the original system, $15360 = aJ_0 + 0.15 \times A_0$ and $43008 = 0.08 \times J_0 + 0.82 \times A_0$ Accept with J_n and
		A_n or other appropriate variables.
	M1	Uses the sum of initial populations equals 64000 in an attempt to find <i>a</i> . (May have determinant 1 for this mark.)
		If using alternative, use of e.g. $A_0 = 64000 - J_0$ in second equation to find J_0 ,
		followed by attempt to find <i>a</i> . Award for an attempt to solve the equations, but don't be too concerned with the algebraic process as long as they are attempting to use all three equations.
	A1	Correct value, $a = 0.6$ (or 0.60 or $\frac{3}{5}$).
(iii)	M1	Uses their <i>a</i> to find the value of J_0 . This mark may be gained for work done in (ii) if the alternative has been used but must have come from a correct method.
	A1	Correct difference found, as long as there is no contradictory statement – so $\frac{1}{25} \frac{1}{600}$ is A0
(c)	B1ft	"decrease of 2560" is A0. Comments that the change is an increase so does not fit the model. Follow through
		their answer to (b) as long as at least a value for J_0 has been found. If a decrease has been found allow for commenting the model is suitable. If an answer is given to (b)(iii), follow through on whatever their answer is. If no answer has been given, but an initial population found, a comparison should be made between this value and 153600 with conclusion must be consistent with their answer for J_0
(d)	M1	Introduces a third category (may be <i>M</i> ature, <i>E</i> lderly or any suitable letter used) and sets up a matrix multiplication (the left hand side may be missing for this mark) with all three categories in the column vector. The dimension of the matrix should be 3 in at least either row or column, and there should be a 3×1 vector.
	A1	Sets up the new matrix equation, including both sides and making clear the zero (underlined) so that the correct progression that no new juveniles arise from the mature chimpanzees is clear. Overlook other values, though ideally the other two zeroes are shown too, to indicate mature chimpanzees do not regress to adulthood, and juveniles cannot proceed directly to mature chimpanzees.

Appendix: Alternatives to 8(b)

Note that variations may occur with the line equation chosen in part (a), but mark as follows:

Question		Scheme	Marks	AO	
Alt 1 (b)(i)	As per	main scheme.	B1 M1	2.2a 3.11	
	$d^2 = ($	$(-400+600\lambda)^2 + (200-100\lambda)^2 + (-250+100\lambda)^2$			
		$380000\lambda^2 - 570000\lambda + 262500$			
			dM1	1.11	
	=3	$380000 \left(\lambda - \frac{3}{4}\right)^2 + 48750 \Longrightarrow \lambda = \dots$			
	As per	main scheme.	M1 A1	3.4 1.1	
			(5)		
(ii)	Length	h of tunnel is $\sqrt{"48750"} =$	M1	1.1	
	Awrt 2	$221\mathrm{m}$ from correct working, so completion of square must have	A1	1.1	
	been c	correct. (Must include units)		1.1	
	-		(2)		
	B1M	As per main scheme.			
(i)	ым 1	As per main scheme.			
	M1	Realises the need to find the distance from the point on the mountain	ain to a gene	eral	
	point on the line.				
	dM1	Attempts the distance or distance squared of MX , expands and c square to find the value of λ for which distance is minimum. May	-		
		forms for the completed square. Look for $A(B\lambda - C)^2 - D + "26$	52500" whe	ere	
		$A, B, C, D \neq 0$ but B may be 1.			
	M1A 1	As per main scheme.			
(ii)	M1	Correct method for the distance. May be as per main scheme, or v	via extracting	g fron	
	A1	the completed square constant term. $25\sqrt{70}$			
Alt 2	AI	Correct distance including units Accept awrt 221 m or 25/2/8 m		22	
AIT /		Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m			
	As per	main scheme.	B1		
(b)(i)	*				
	$d^2 = ($	r main scheme. $(-400 + 600\lambda)^2 + (200 - 100\lambda)^2 + (-250 + 100\lambda)^2$	B1 M1	3.1	
	$d^2 = ($ $= 3$	r main scheme. $(-400 + 600\lambda)^2 + (200 - 100\lambda)^2 + (-250 + 100\lambda)^2$ $380000\lambda^2 - 570000\lambda + 262500$	B1	3.1	
	$d^2 = ($ $= 3$	r main scheme. $(-400 + 600\lambda)^2 + (200 - 100\lambda)^2 + (-250 + 100\lambda)^2$	B1 M1 dM1	3.1	
	$d^{2} = ($ $d^{2} = ($ $\frac{d}{dx}(d))$	r main scheme. $(-400 + 600\lambda)^2 + (200 - 100\lambda)^2 + (-250 + 100\lambda)^2$ $380000\lambda^2 - 570000\lambda + 262500$	B1 M1 dM1 M1	3.1 1.1 3.4	
	$d^{2} = ($ $d^{2} = ($ $\frac{d}{dx}(d))$	T main scheme. $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $380000\lambda^{2} - 570000\lambda + 262500$ $^{2}) = 0 \Rightarrow 760000\lambda - 570000 = 0 \Rightarrow \lambda =$	B1 M1 dM1 M1 A1	3.1 1.1 3.4	
	$d^{2} = ($ $= 3$ $\frac{d}{dx}(d)$ As per	T main scheme. $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $380000\lambda^{2} - 570000\lambda + 262500$ $^{2}) = 0 \Rightarrow 760000\lambda - 570000 = 0 \Rightarrow \lambda =$	B1 M1 dM1 M1	3.1 1.1 3.4 1.1	
(b)(i)	$d^{2} = \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 100\lambda)^{2} + (-$	B1 M1 dM1 M1 A1 (5) M1	2.2 3.1 1.1 3.4 1.1	
(b)(i)	$d^{2} = ($ $= 3$ $\frac{d}{dx}(d)$ As per Length Awrt 2	The main scheme. $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (200 - 100\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 600\lambda)^{2} + (-250 + 100\lambda)^{2}$ $(-400 + 100\lambda)^{2} + (-250 + $	B1 M1 dM1 M1 A1 (5)	3.1 1.1 3.4 1.1	

		Notes		
		As per main scheme except for:		
(i)	dM1	Attempts the distance or distance squared of \overline{MX} , differentiates a find λ for minimum distance.	and set to ze	ero to
(ii)	M1	May substitute λ into the distance squared formula to find distance		•
Alt 3	<i>k</i> = 20		B1	2.2
(b)(i)	$\overrightarrow{MP} =$	the point on mountain, then e.g (may use Q rather than P) $\begin{pmatrix} -400 \\ 200 \\ -250 \end{pmatrix} \Rightarrow \cos \theta = \frac{\begin{pmatrix} -400 \\ 200 \\ -250 \end{pmatrix} \begin{pmatrix} 600 \\ -100 \\ 100 \end{pmatrix}}{\sqrt{(-400)^2 + 200^2 + (-250)^2} \sqrt{600^2 + (-100)^2 + 100^2}}$	M1	3.1
	$\frac{\Rightarrow \operatorname{co}}{\Rightarrow \overline{PZ} }$	$s \theta = \text{ or } \theta = \text{ (where } \theta \text{ is the angle between the line and } \overline{MP} \text{)}$ $\vec{K} = \overline{MP} \cos \theta =$	dM1	1.1
	So e.g		M1	3.4
	So coo	ordinates of <i>X</i> are (150, 325, -75) Accept as $\begin{pmatrix} 150 \\ 325 \\ -75 \end{pmatrix}$	A1	1.1
			(5)	
(ii)	Length	n of tunnel is $ \overrightarrow{MP} \sin\theta = \dots$ (oe)	M1	1.1
	_	221m from correct working. (Must include units)	-	
	AWIL	22 mi nom correct working. (Must include units)	A1 (2)	1.1
		Notes	(2)	
(i)	B1	Correct value of <i>k</i> deduced.		
(1)	M1	Finds \overline{MP} (or \overline{MQ}) and attempts scalar product formula with thi	s and the di	rectio
		of the line to find the angle or cosine of the angle between line and $\frac{2}{3}$		
	dM1		•	WQ)
	uivii	Uses their angle with the cosine to find the length of PX (or QX equivalent trigonometric methods (e.g. finding opposite side first	-	
		equivalent ingonometrie methods (e.g. minding opposite side mist	und using u	angen
		or Pythagoras.		angen
	M1	or Pythagoras. Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of the length of and \overrightarrow{PX} (or \overrightarrow{PX}) to find the coordinates of the length of and \overrightarrow{PX} (or \overrightarrow{PX}) to find the coordinates of the length of a	ne point on	-
		Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of the at shortest distance from <i>M</i> .	ne point on	-
	M1 A1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of the at shortest distance from <i>M</i> . Correct point.	_	the lin
(**)	A1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of the at shortest distance from <i>M</i> . Correct point. Correct method for the distance. May be as per main scheme, or use	use of sine r	the lin atio
(ii)		Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of the at shortest distance from <i>M</i> . Correct point. Correct method for the distance. May be as per main scheme, or us with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept	use of sine r	the lin atio
(ii)	A1 M1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of that shortest distance from M . Correct point. Correct method for the distance. May be as per main scheme, or us with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept trigonometric methods.	use of sine r t equivalent	the lin atio
	A1 M1 A1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of that shortest distance from M . Correct point. Correct method for the distance. May be as per main scheme, or us with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept trigonometric methods. Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m	use of sine r t equivalent	the lin atio
(ii) Jseful di	A1 M1 A1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of that shortest distance from M . Correct point. Correct method for the distance. May be as per main scheme, or us with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept trigonometric methods. Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m	use of sine r t equivalent	the lin atio
	A1 M1 A1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of that shortest distance from M . Correct point. Correct method for the distance. May be as per main scheme, or us with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept trigonometric methods. Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m M (100, 200, 100) Note for P , $\cos \theta = \pm \frac{1}{\sqrt{38}}$	use of sine r t equivalent 57 $3\sqrt{105}$,	the lin atio
	A1 M1 A1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of that shortest distance from M . Correct point. Correct method for the distance. May be as per main scheme, or us with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept trigonometric methods. Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m M (100, 200, 100) Note for P , $\cos \theta = \pm \frac{1}{\sqrt{38}}$	use of sine r t equivalent 57 $3\sqrt{105}$,	the lin atio
	A1 M1 A1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of that shortest distance from M . Correct point. Correct method for the distance. May be as per main scheme, or us with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept trigonometric methods. Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m M (100, 200, 100) Note for P , $\cos \theta = \pm \frac{1}{\sqrt{38}}$ $\theta = 25.5^{\circ}$ and $\left \overrightarrow{PX}\right = 7$	use of sine r t equivalent $\frac{57}{3\sqrt{105}}$, $75\sqrt{38}$	the lin atio
	A1 M1 A1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of that shortest distance from M . Correct point. Correct method for the distance. May be as per main scheme, or us with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept trigonometric methods. Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m M (100, 200, 100) Note for P , $\cos \theta = \pm \frac{1}{\sqrt{38}}$ $\theta = 25.5^{\circ}$ and $\left \overrightarrow{PX}\right = 7$	use of sine r t equivalent $\frac{57}{3\sqrt{105}}$, $75\sqrt{38}$	the lin atio
	A1 M1 A1	Uses the length of and \overrightarrow{PX} (or \overrightarrow{QX}) to find the coordinates of that shortest distance from M . Correct point. Correct method for the distance. May be as per main scheme, or us with their angle between the line and and \overrightarrow{MP} (or \overrightarrow{MQ}). Accept trigonometric methods. Correct distance, including units. Accept awrt 221 m or $25\sqrt{78}$ m M (100, 200, 100) Note for P , $\cos \theta = \pm \frac{1}{\sqrt{38}}$	use of sine r t equivalent $\frac{57}{3\sqrt{105}}$, $75\sqrt{38}$	the lin atio

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom